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Abstract—In this paper the boundary-value problem for the stress concentration at a spherical cavity in a
field of isotropic tension is solved within the framework of Mindlin’s theory of an elastic continuum with a
deformable micro-structure. It is found that the stress concentration factor is moderately larger than the 3/2
of classical elasticity for a wide range of material properties and ratios of radius of cavity to a length parameter
of the material—with a critical ratio, nearly independent of the remaining material properties, for which the
stress concentration factor is a maximum.

INTRODUCTION

IN THIS paper a boundary-value problem is solved within the framework of Mindlin’s [1]
theory of an elastic continuum with a deformable micro-structure. In the first section the
equations of the continuum are presented, and in the following section a set of necessary
and sufficient conditions on the elastic constants for the potential energy density to be
positive definite is displayed.

In the third section the differential equations which govern radially symmetric prob-
lems are derived and their general solution is exhibited. A linear differential operator,

(1-{D})(1-23D})D?,
where
2 d? 2d 2

"7 dr? rdr ¥
arises, and it is shown that A2 and A2 are positive, real-valued parameters which depend
on material properties.

In the fourth section the boundary-value problem for the stress concentration at a
spherical cavity in a medium of infinite extent subject to a field of isotropic tension is
formulated, and the solution is obtained. The nondimensionalized form of the solution
depends upon eight ratios of elastic constants and the ratio of a length parameter of the
material to the radius of the cavity. In the fifth section, by utilizing experimental informa-
tion and analogies with the classical theory of elasticity, ranges of values for these ratios
are selected.

Calculations are performed for several values of each ratio, covering a wide range, and
the results are presented in the sixth section. In contrast to the solution obtained by
employing the classical theory of elasticity, where the result is a constant, 3/2, independent
of material properties and the radius of the cavity, the solution obtained by employing
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the theory of an elastic material with micro-structure shows a stress concentration factor
which depends on both material properties and radius. In all the cases considered, the
stress concentration factor is higher than the classical 3/2, and there appears to be a
critical radius of cavity, for each material, at which the stress concentration factor reaches
a maximum. The ratio of the critical radius, to the material property chosen as a reference
length, is insensitive to wide variations of the eight remaining material properties.

EQUATIONS OF THE ELASTIC CONTINUUM WITH MICRO-STRUCTURE

In {1], Mindlin derived the following relations in rectangular cartesian coordinates
x, i =1,2,3, for an elastic continuum with a deformable micro-structure: the twelve
stress equations of equilibrium (omitting body forces)

0dtij+0;) =0,

(1)
Oli+0j = 0:
and the twelve traction boundary conditions,
t; = nyt;;+0y),
2
Ty = nypayj,
where 0; = 0/0x; is the gradient operator,
. ow ow ow 3
ij T 3 0ij = 2> ijk = 3
T dey T ayy Fie 0Ky )

In (3), t;; is the Cauchy stress, o;; is the relative stress, p;j is the double stress, and
W (&;;» vij» Kijp) is the potential energy density with ‘

&; = %(aiuj+6jui)v Vij = Ou;—yi, Kijke = 0 i 4)

where ¢;; is the macro-strain, y;; is the relative deformation, kj is the micro-deformation
gradient, u; is the macro-displacement, and ;; is the micro-deformation.

The potential energy density, W, is taken to be a homogeneous quadratic function of
the forty-two variables ¢;;, ¥;;,.K;j;. In the case of a centrosymmetric, isotropic material
(referred to as isotropic in the sequel) W reduces to

W = JAeqe;;+ peiei s+ 5b1viyi; + 3270
+3b3Yiii + 81ty + 820 + V)
+ Ay Ky + GaKanK i+ 333K K s
5)
+ 34K, K i + A5 K Ko+ 30K ik (
+ 304 o3+ 1 1 K433 i+ 301 3K kK

1 i
+ 201 4K 31K i+ 301 5K jiK i
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and the constitutive equations (3) become
Ty = A8+ 208+ 81071+ 82071+ Vo), (6a)
6i; = g10;€x+ 28285+ b 16,y + b2y + b3y, (6b)

Hige = @106 ppi8 i+ Kipp0if) + @2(K O + K pap0ij)
+ 3K i 0ij+ A4Kipp0 e + As(KjppOix + K ip i)
+ gk pip0u + A10Kij + Ay 1 (Kyij+ K i) (6¢)
+a13Ku;t 814Kkt Ay sKijis

where J;; is the Kronecker symbol.

Inserting the definitions (4) into the constitutive equations (6) and the latter into the
stress equations of equilibrium (1), twelve equations on the twelve variables u;, ¥;; are
obtained which, in invariant form, may be written

(M+2g2+b2)Vzu+(/1+ﬂ+2g1+2g2+b1+b3)VV ‘u
—(@1+b)VI:)— (g2 + b))V Y —(g,+ b3V =0,

7
(@, +as)(IV- Y- V+VVI )]+ (as+a, ) (V- YyV+ V- V) @)
+(as+a)VV - Y+ a, V(1) +(ag+a s - VV
+a VY +a; 3V, +g,IV-u+g,(Vu+uVy)
+5,I(V-u—I:y)+b,(Vu— )+ byuV—y,) = 0,
where I is the idemfactor, Y, is the conjugate of {, and V is the gradient operator.
POSITIVE DEFINITENESS OF THE POTENTIAL ENERGY DENSITY
The quadratic form (5) can be written in matrix notation as
W = }XAXT 8)

where A is the symmetric matrix,

>
i

, 9
06 O O 0,3 Ay 05y 05y On ©)
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with
_171+b2+b3 b by g1+28; g1 8 ]
by by+b,+bs b g1 g:1+2¢; 81
by by by+b,+b; g1 g1 81128,
AS g4, g1 g1 A+2u A AT
81 g:1+28, 81 A A+2p i
[ & 81t g:1+28, 4 A A+2u |
[b, b3 g,
A= by by g, (10)
.82 82 HU
— & &2 & a,+das+as
& $3—ay a4 as+ayta,
& a, $3—a, as
Ay =| ay+as+ag as+a;+ag, as ag+ajo+dss
a,+as+ag as as+ayt+ag, ag
a,+a,+ay; a;+a;,+a;s a; a+a; +a;
La1+az+a3 a; a,+a;;+a;s a;
a,t+as+ag a,+a+a; aita,+as ]
as a;+a;+a;s a,
as+ay +d, a, artay+ags
ag a,+a+ag; a,
ag+ajo+as a, a;+ay+a;
a; a3 +aotdyg as
a,+ay+4ag; as az+aot+ag, |
(a0 ay1 Gy G4 ays Gg3 |
a1y Qo 11 413 Q14 4ys
11 AQpr G0 dys Qi3 Qy4
A, =
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where,

¢1
&, =a,+a,+as, (11)

2a,+2a,+as+a,+2as5+ag+ag+2a,+a3+a,,+0a;s,

63 = 2a4+alo+a13.
The matrix 0, is the zero matrix with m rows and n columns, X is the row vector,

X =[X,,X,...,Xg),
with

X, = 733, 7225 Y115 €33, €220 €11 )

X, = [732, 723, 2623),

X3 = [713, 7315 2631}

Xy = [y20, V120 2612)

Xs = [K111, K122, K133, K212, K313, K221 K331 ),
X = [K222, %233, K211, K323, K121, K332, K112},
X; = [K333, K311, K322, K131, K232, K113, K223}

Xg = [K123, K231, K312, K213, K321, K132},

and X7 is the transpose of X.

A well known theorem of algebra (see for example [2]) states that, if M is a real, nxn,
symmetric matrix and if Y is a real row vector with n elements, then a set of necessary
and sufficient conditions for the quadratic form, g = YMY?7, to be positive definite can be
obtained by requiring the discriminants of the quadratic forms obtained from g by
eliminating, successively, (n—1), (n—2), ..., 0 of the variables, to be greater than zero.

In the present case, the matrix A of the quadratic form (8) has a higher degree of
symmetry than that required by the theorem, and the number of inequalities needed to
insure positive definiteness of the potential energy density is less than the number of
variables. The step-by-step evaluation of the discriminants can be performed (see Appen-
dix), and equivalent sets of necessary and sufficient conditions for positive definiteness
can be selected. One such set is the following:

2¢3
b,+by

2
(3g,+2g,) >0,
3b,+b,+ b,

f=pu— >0,

31420 = 3A+2u—

b,+b; > 0,
b,—b; > 0,
3by+b,+b3 >0,
alo-Fa13 > 0,

aio—ay, >0,
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¢ >0,
54 = alo+2a11+a13+a14+a15 > 0’

{s = ago+2ay,—a13—a —ays >0, (12)
Ay =§8,-285>0,
A, = (@10+a43)(@10+815)— (@11 +814)* > 0;

Ay = (010—011)2—(‘113—015)2—(014—015)2""(“13—015)(‘114"‘115) > 0,

31 ¢ a;+as+as
Ay = ¢ ¢3 2as+ay 1 +ay,| >0,
a,+as+ag 2as+ay;+ay, 2ag+a;0tags
3&, &, a,+as+ag a,+a,+as
¢, & 2as+a,+a,, 2a,+a;+as
As = a,+as+ag 2as+ay+ay, 2ag+a0t+a;s 2a+ag +ag; > 0.
ait+a,tas 2a,+ay+ays 2a,+aq+a;; 2a3tagetag,

RADIAL SYMMETRY

Governing equations
For radially symmetric problems we take

u = u/rle,,
\II = l#,,(r )erer + 'ﬁoa(r)eoeo + ‘/’oo(r) e¢e¢7

where e,, e, €, are the unit vectors corresponding to the spherical coordinates 7, 6, ¢.
Inserting (13) into (7) and taking linear combinations of the resulting equations we
obtain the system:

(13)

ki1DoDut,—ky,D3¥p — k13D = O, (14a)
kz1D1u,+ (k2D D3 — Koo W +ka3D Doy, = 0, (14b)
k31Dt +k32D,D3% 5+ (k33D Do —KyaWs = 0, (14c)
where,
¥, = 3(1:0) = (4, + 20),
Un = ee, . (W—y0) = 3, — ) (15)
the linear differential operators D, are defined by
d d 1 2
Do=g, Di=g-n Dimg4l D= 5t
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and
kiy = A4+2u+2g,+4g,+b,+b,+b;,
kyp = 1 =28, +3s,
kys = & +4£,+285,
kys = ksp = {1 +8r— 83,
k3y = ki3 = 3g,+2g,+3b;+b,+b,, (16)
kiz = kyy = 2g,+by+bs,
k32 = 3(b2+b3),

,33 = 3(3b1+b2+b3).

The form of equations (14) is suggested by the form of equations (8.4) of [1], and the
definitions of the k;; are the same as in [1]. Further motivation is provided by the form of
Mindlin’s equations (7) of [3]. Employing the assumptions (13) and the definitions (15)
the relations (4) become:

du, du, ,
Epp = ar’ VYor = E l//rr__lps’
U, u,
€90 = Egp = ., Yoo = Voo = 7*'//s+%'/’£,
eaﬁ=0"a¢ﬂ; yaﬁ=0’ a#ﬂ;
(17)
L,
" odr  dr
dwﬁ dy,
K99 = Kr¢¢ dr d ’
3y,

Koor = Korg = Kopr = Korp = 35

and all other x4, = 0, where the indices «, f, y range over the values r, 0, ¢.
Inserting (17) into the constitutive equations (6), we obtain

= (A+2u+g; +2gz) +2('1+g1)——(3g1 +28, 0, — 28292,

Tog = Tpp = +2('1+ﬂ+81+g2)——(3g1+282)'//s+82'//m
T = 0, o # P

= (g, +2g,+b

+2(b1 +81)__(3b1 +b,+ba),—(by+ b7,

Ogg = Opp = (81+b1) +(2g1+2g2+2b1+b2+b )_"(3b1+b2+b3)ws+7(bz+b3)‘//w

o =0, a#p; (18)

lpl‘l‘ '/’s

d
b = 161 = Ea1 0 +3[<a1+a2+a3)+(az+as+as)1"’ e 261
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d‘llrr D
+7[(2a1 +au+‘115)+(2a5+au+al4)]

Hegg = Hrpp = [¢— 753]

d
+[¢2+531—d‘”—5,

D

toor = Poor = [(a1+a, +a3)—3(2a,

D
+3[(2a, + a1 +a;3)+Q2as +ay +a14)]—r'5

+[{a, +02+03)+(201+au+015)] lﬁs

wrr

Uors = Bore = [(az+as+ag)— 3Qas+ay, +ax4)]

+3[(2ay+a,; +a3)+(Qag +a10+a15)]¢"

+[(a; +as +as)+(2a5+a11+al4)] ws

and all other p,5, = 0.

General solution

The system of equations (14), with variable coefficients, may be transformed to one,
with constant coefficients, in the variables

0, =u, 0, = D3y, O3 = Doy, (19)
by the operations
Dy(14b),  kyy(14a)—k,(D3(14b),  ky3(14a)—kyDo(14c).
Noting that
d> 2
2

2
P EE e

d
D3D, = DoD, = - = D},

we obtain
k31 D}O +[ky,D? — k3310, + ky3D70;5 = 0,
[ky1ky2D} —(ky 1Ky, —k§2)1@, +[ky ko3 D? +ky 2k 3105 = 0, (20)
[ky1k3DF +ky2k1310; +[ky ka3 DF —(ky 1k —k$3)]@; = 0.
Now the ©,, i = 1, 2, 3, satisfy the equation
(1-4iD})(1-23D})D}O; = 0 (21)
where
A3, 23 = [b £ (b*—4ac)*)/2e,
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and
a = kqy(ky2kas —k33),
b = kyy(Kyokas+kaoKss)+ 2k 2k 3kys —kaokts —kaskis, (22)
¢ = ky 1Kok —kioks3 —kisky,.
The nature of the solutions of (21) depends on the character of the A%. In the Appendix,
the conditions for positive definiteness are employed to prove that
a>0, b>0, ¢ >0, b%—4ac > 0, (23)
and hence that the A? are real and positive.

The operators in (21) are commutative, and hence the general solution for each ®;
can be written as the sum

0,=0?+0!+67} i=123, (24)

where ®2, ©}, ®? are the solutions of
D}©Y =0, (1-i{D})O! =0, (1-3D?)Of =0. (25)

The general solutions of equations (25) are:

@) = ciyr+cipr?, (26a)
O} = ¢y [Mr 2= A Nt cige” HATr T 2+ 207, (26b)
©7F = cis (432 = dyr™ 4 cige MG T2 4 Apr ), (26¢)

where the c;; are constants. The solution for the variables u,, Y2 and y, is now a straight-
forward matter. The solutions (26) are inserted in (24) and the latter then substituted into
(20) to determine the relations among the constants c;;. Once this has been done, the
second and third of equations (19) serve as simple differential equations on the variables
Y2 and y,. These equations are solved and two additional constants of integration are
introduced. The expressions for u,, Y2 and ¥, are then substituted into equations (14) to
find the remaining relations among the constants. The result is the following general
solution of equations (14):

U, = cyr+cr” 2+ Poles fra€’ M + ey froe” M)
+Bales fr1€7 42+ c6 fr0e ™),
Yo = CzCz"_3—“17(03}1116"“"+C4hioe_r/ll) (27)
—ayr(cshy €772+ cohpoe ™),
¥, = ¢y —Ajr” 1(c3er/2, +C4e_'“1)I —A3r l(Csermz‘|‘cesenr//b),
where, fori = 1,2,and j =0, 1,

fi = Qfry* +(=1Y@2/r),
hy = 3(A/ry* -+ 3(— 1Y(A/r)* +(A/r)’,
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the ¢’s are arbitrary constants and

"= _Tkyskss—Aitky k33 —ki5)) _ [ky1ka3 + ATk, 5Ky 5]
' [ky1kas + A7k 5k q5] (kyikoz— Ak Koy — k3T

B, = _[k23+ai(k22_’1i2k(22)] - _[(k33_'1i2k’33)+aik23] _ [k, +K13]A7 (28)
P k12 k13 kll ’

Cl = 3k13/k53, Cz = —3k12/k'22-

STRESS CONCENTRATION AT A SPHERICAL CAVITY

The solution of the boundary-value problem for a spherical cavity of radius, a, in a
medium of infinite extent subject to an isotropic tension (t, per unit area) at infinity is
obtained by applying the following boundary conditions to the general solution:

onr=a:r,,+a,,=0; ,urrr=0; ”r00=.ur¢¢=0; (29)

asr — o0 1,,+0, - ty; 7 Heogs  Hegy = 0. (30)

Inserting (27) into (18) and employing (28), we find after some manipulation,
T+ 0, = ¢;3A+20) —4ciir > +Tr 7 Hea frie7% +cq froe ™)
+ 5" Hesfare! %24 cg fr0e 7%, (31

Herr = — 30205801 4+ e3¢ (384 hyy + 01 f11)
+ e M3E o hy o+ 11 fro) (32)
+ese (3 arhy  + xa fa1) + co TP H3E R0+ X2 fr0),

2pirop = 2lrgp = 3¢2058ar™* +c3€" (=38 01k, + 11 f11)
+ e (=38 401h10 1y fro) +ese” (=38 a5k + 115 f21)
+cge” "= 38,0500 + 12 f20) (33)
where
T, = BBA+2)— {y(ky30+ks3),
xi=Si(l+a)+&,2~ay),
ni = 251+ a)+ 832 —ay),

fori=1,2and % & &, &, &s, oo o By, i are defined by (11), (12), and (28). Applying the
second of the conditions (30) to equations (32) and (33) we conclude

¢y = cs = 0. (34)

Applying the first of the conditions (30) to equation (31) we obtain
¢y = to/(3A+2f). (35)
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Now, applying the conditions (29) to the equations (31), (32), (33), and employing (34)
and (35) we get the following set of simultaneous equations for the determination of the
constants c,, ¢4, Cg:

dcyfia 3 —cqe M a9 —cee YA a" Y5 = to,
3cyl284a™  —cae” M(3E o + X1 S T0) — cse T HHBEsarh 0+ 22 50) = O,
3cala8aa™* —che” M3 ko — 11 f{0) —coe T H3Eaarh50 =12 %) = 0, (36)
where
% = fi(d/a) and  h{; = hi(4i/a).

The solution of equations (36) is given by

T 44 1+K|

Co = thealll [X2+’12] [ K :| (37)
¢ S0 [Cal+m)—-T10+n)1[1+K ]
o — _loge”™® [x1+m] [ K J
¢ fi Dot +n)-Ti+n)I 1+ K]’
where
K =30580 [0S %20t +11) =T 1(xz +12)] (38)

- 40a2[(0E 450 + 12 50) X1 + 1) f To — BasEahlo+ X1/ 10) (2 +12) 0]

We define a stress concentration factor,

M}
b
tO r=a

which is the ratio of the force per unit area, across a meridional plane at r = g, to the
radial force per unit area far from the cavity. Inserting (27) into (18) and employing (34)
we find

Too+aoo = Cl(3j.+ 2ﬂ)+ZC2ﬂr- 3
‘%043—'“'1_‘1}»1_2"[’110 "2(}»1/7)21010],

_%Cse-'/hrzlz_ *rlhso —z(iz/r)zfzo]’ (39)
and hence, employing (35) and (37) we find
Tos + Tgg _ 3 KK’
to ] - 2[1+3(1+K)]’ 0

where

K = [f5T 1002 +12) —f ol 2061 +11)]
f0S %1z +12)—Ta(xs +m)]°

and K is defined by (38).
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PREPARATION FOR NUMERICAL CALCULATIONS

For the purpose of obtaining numerical values for the stress concentration factor, it is
desirable to express the material constants, that appear in K and K, in terms of dimen-
sionless quantities for which estimates of magnitudes can be made. It can be shown that
K and K’ can be expressed in terms of the foliowing independent ratios of material con-
stants:

vy = 2g,/(b,+b3) vs = 4200+ ),
v, = (38, +282)/(3b; + by +b3), ve = £3/84,
vy = (1+20)/(by+b3), v, = &/E,
va = (A+20)/(3by +b, +bs), ve = Lo/t

and an independent ratio of a parameter of the material with the dimension of length,
e.g. A, or A,, to the radius of the cavity.

The selection of appropriate values for the ratios v(i = 1,2,..., 8) would be a simple
matter if the elastic constants were known from experiments; but such is not the case.
However, by studying Mindlin’s [1] solutions for micro-vibrations and plane waves and by
solving three simple problems of homogeneous deformation, viz., simple tension, hydro-
static pressure, and shear, an understanding of the physical significances of the ratios v,
can be gained. Coupling this with the results of neutron scattering experiments and the
conditions for positive definiteness of the potential energy density we can obtain what
appear to be reasonable ranges of values for these ratios.

Solutions of the .problems of simple tension, hydrostatic pressure, and shear are
easily obtained by noting that the assumptions

7;; = constant, o, =0, Wig =0 (41)
J J J

satisfy the stress equations of equilibrium identically. In addition, from (6),

Hig = 0 implies  x;; = 0, {42)
o;; =0 implies o; =0, oup = 0, (43)
where
Gupy = Hoy+0oy), oy = 20— 05).
However,
OLij) = (bz“bs)?[ij], (44)
Oijy = €10i€mt+ 28281j+ b 10 v+ (b2 + b3 Yy (45)

Thus, ay;;; = 0 implies y;;; = 0, and, solving (45) for y; in terms of g; with a;; = 0, we
find

_ 1 bi(3g, +2g2)— 2g,
Yip = (b2+b3)[g1 3b,+b,+bs O 1 b, + b, &ijs (46)

whence

47

[ 38i+2e, 78



Effects of micro-structure on the stress concentration at a spherical cavity 95

Inserting (46) and (47) into (6a) and noting that y;;; = 0, we obtain
Tl'j = zéijskk+2ﬂ6ij (48)

in analogy to the classical theory of elasticity. The form (48) was also obtained by Mindlin
[1] in connection with a low frequency long wave-length approximation to his micro-
structure theory.

Equations (48) can be inverted to give the strains in terms of the stresses, and it is
evident from (46), (47) and (48) that the assumptions (41) will lead to solutions with

g; = constant, y;; = constant, K = 0.

Solutions of this form will satisfy Mindlin’s compatibility equations, and hence can be
integrated to give u; and y;;.

Uniform tension

A prism (with axis in the x, direction in rectangular cartesian coordinates) which is
subjected to a uniform tension, 7, over its plane ends and which is free from traction on
its lateral surfaces is in equilibrium under the stress field

Ty = I all Othel' ‘cij = 0, aij = 0, uijk = 0

Employing (48) we find 3
A+mpT —AT
1= 5 v 80 =833 = o3 o
A34+20) 2434+ 24)
As in classical elasticity (see for example [4]) we may now define a Young’s modulus, E,
and a Poisson’s ratio, ¥, by

T  i(31+2p)
A+i

€, A

€1y 2(/~I + ﬂ)’
and the numerical values that were assigned to E and v in the classical theory will now be
assigned to E and 9. Consequently, 1 and /i will be assigned the numerical values formerly

assigned to the Lamé constants 1 and yu of the classical theory. Now, employing the first
and the second of the inequalities (12) and the definition of ¥ we obtain

E

V=

€11

30420 1+

1= %

and hence —1 < ¥ < 3 for positive definiteness. If we now restrict our consideration to
“normal” materials, by which we shall mean materials for which quantities analogous
to Poisson’s ratio are positive and for which the micro-deformation has the same sign
as the macro-deformation, then we may delimit the range of vs(= ) by 0 < v < 1.

Hydrostatic pressure

A body of arbitrary shape subjected to a hydrostatic pressure, P, will be in equilibrium
under the stress field

Ty = Tyy = T33 = — P, ;=0 (#)), o; =0, Bijpe = 0.
The macro-dilatation, ¢;;, is equal to —3P/(34+2j2), and y; is given by (47). Thus,
vao(= (381 +28,)/(3b1 + by +b3))
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appears as the negative of the ratio of the relative dilatation to the macro-dilatation. We
have the intuitive idea that, for normal materials under hydrostatic pressure, the micro-
dilatation, ¥, will be somewhat less than the macro-dilatation and hence that the relative
dilatation, y;;, will have the same sign as ¢;;. This implies that v, < 0. Furthermore, from
(47), it is evident that v, = O corresponds to a limiting case in which the material is micro-
homogeneous in bulk, ie., the micro-dilatation coincides with the macro-dilatation, and
that v, = —1 corresponds to a limiting case in which the micro-medium is incompressible.
Thus, the appropriate range for v, is —1 < v, <0.

Shear

A cube subjected to a uniform shear, T, on its faces normal to the x,, x, directions is in
equilibrium under the stress field

T2 =Ty = T; all other 1, = 0, Gy = 0’ uijk =0.

ij

Employing (48) we find that ¢,, = &,; = T/2ji and employing (46) we find that

2g
Yazy = “[ﬁi)‘;:lsu = —Viéy,.

Following similar arguments to those used in establishing the range for v,, we conclude
that the appropriate range for v, is —1 < v, < 0.

Results from wave propagation and the constitutive equations

From the studies of plane wave propagation in [1] we see that v; can be determined
from the relation

b = A+2a  3pi}
} T bhy+by, pdw?

where d is half the length of a unit cell (assumed to be a cube), p and p’ are the total mass
per unit macro-volume and the mass of micro-material per unit macro-volume respectively,
#, is the limiting group velocity of longitudinal waves at zero frequency and zero wave
number and w, is the cut-off frequency for longitudinal-optical waves. An estimate for v,
can be obtained from the results of recent studies of bismuth ([5], [6], [7]). However, since
bismuth is trigonal and not isotropic we must allow for some variation in the computed
v3. Thus, taking

5, =2x10%cm/sec, , = 1'5x10' 3 radfsec, d =3A,

and assuming p = p’, we calculate v; ~ 0-6, which we shall take as a typical value. In
any case, we are assured from the conditions for positive definiteness, (12), that v; > 0.
Again, from the studies of plane wave propagation in [1], we see that v, can be deter-
mined from the relation
A+20 3pi?

"= 3 +by+ by plo?

where p, p’, d and ¥, were defined previously, and w, is the cut-off frequency for longi-
tudinal-dilatational waves. To the writer’s knowledge, no experimental values of w, have
been observed and hence we must at present resort to intuitive arguments in order to
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establish an appropriate range of values of v,. We note that

E _ b2+b3
V3 3b1 +b2+b3,

and, from the form of the constitutive equations, we can interpret b, +b; as a relative
stiffness in shear and 3b, + b, +b; as a relative stiffness in dilatation. It is plausible to
expect that the ratio of these two stiffnesses is analogous to the ratio of the corresponding
stiffnesses, 2u and 34+2y in the classical theory of elasticity leading, for a normal
material, to the range 0 < v /v; < 1.

For the determination of appropriate ranges of values of v¢ and v, we employ the
inequalities (see (12))

ve >0, vg—2v3 >0, (49)

and an analogy with the classical theory of elasticity. Suppose that at some point in a
body the only non-zero component of the double stress is g, ,, (in rectangular cartesian
coordinates x,, x,, X3). An examination of the constitutive equations (6¢) reveals that this
double stress will be accompanied by non-zero micro-deformation gradient components
Ki11s K122 K133 K212, K313, K221, and K33,. Suppose now that it is desired to eliminate
all the x;; except for x, . It is clear from the constitutive equations that to do this requires
the application of the double stresses fy34, U133, U212, K313, H221, a0d U334, In particular,
H122(= &3k, ¢1) must be applied to eliminate the micro-Poisson-like effect, x, ,,, produced
primarily by g, . Also, it is clear from Fig. 2 in [1] that, in a normal material, for x,,, > 0
we must have u,,, > 0, and hence &, > 0. Furthermore, if we argue that applying a p,,,
to eliminate the x, ,, caused primarily by a y,,, in the micro-structure theory is analogous
to applying a 1,, to eliminate the ¢,, caused primarily by a t,, in the classical theory,
then for normal materials we will have

0< Hi22 — $aK111

= V7 < 1.
B Eikagq

Once a value of v, is chosen, a range of values of v¢ can be selected which satisfies the
inequalities (49).
For the determination of an appropriate range of values of v4 we note that

$r = (ay,+ay+az)+(a,+as+ag)+E+¢,

and hence, according to the sign of [(a, +a,+a,)+(a; +as+ag)+&;), &, can be greater
than or less than £,. However, it seems reasonable to suppose that £, and &, are of the
same order of magnitude for a typical material, and noting that (12) requires that vg > 0
for positive definiteness, we take 1/10 <vg < 10 as a comprehensive range of values of vg.

In order to nondimensionalize the solution, it is necessary to single out a material
property with the dimension of length. It is clear from (5) and from the definitions of
&, Vij» and x;;, that any ratio of a linear combination of the a;’s to a linear combination
of 4, p, the b;’s and the g;’s or any linear combination of such ratios would suffice. As more
becomes known about the elastic constants of materials with micro-structure it may be
possible to relate a ratio constructed in this way to some characteristic dimension of the
micro-structure. For the present, it is convenient to choose as fundamental one of the
lengths A,, A, which appear explicitly in the solution; we choose the larger of the two, 4.
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It is evident from a comparison of equation (21) with the corresponding governing
equation of the classical theory, that much of the difference between the results of the
two theories can be measured in terms of the parameters 4, and 4,. If these lengths are
small compared to the radius of the cavity, then the effects of the micro-structure will
also be small. It is also apparent from a comparison of equations (3) of {3] with equations
(28) and (29) of [3] that a similar statement (concerning the effect on the classical solution
of the relative magnitude of length parameters of the material to a characteristic dimension
of the body under consideration) can be made for more general boundary-value problems.
In view of this, and the fact that the predictions of the classical theory of elasticity have
been substantiated by photoelastic experiments on bodies of macroscopic dimensions
and by vibration experiments at wavelengths of the order of a few thousand angstroms,
it appears that quantities like A, and A, are certainly very small compared to macro-
scopic dimensions and may indeed be of the order of magnitude of a dimension of the
micro-structure. In fact, a calculation* of the magnitude of a quantity, analogous to 4,
and 4,, based on data obtained by Germer, MacRae and Hartman [8)} in low-energy
electron diffraction experiments, shows that this quantity is approximately 5/8 of the
interplanar distance of atoms. On the other hand, for the boundary-value problem under
consideration, the radius of the cavity should probably be several times larger than a
typical dimension of a crystal lattice if the continuum micro-structure theory is to be
applicable. Thus, the ratio a/A, should be greater than unity, and we shall take this as the
lower limit in the numerical calculations.

It is evident that it is much more difficult to choose a small range of appropriate values
for the ratio a/4, than it is for the v,, and the numerical calculations are designed with
this in mind. In order to keep the numerical work to a minimum while still exhibiting the
characteristic features of the problem at hand it is convenient to choose a hypothetical
‘standard’ material (by assigning a set of values to the ratios v,) and to observe the behavior
of the solution as the ratio a/4, is varied. In addition, departures from the standard are
also considered in order to show the effects of varying the v,.

RESULTS

On the basis of the remarks in the preceding section a standard set of values of the v;
is chosen to be

vy = —0-10, vs = 030,
v, = —0-10, v, = 1-00,
vy = 060, v, = 0-30,
vy = 020, vg = 1-00,

and computations are performed to observe how the solution changes when one of the
v; is allowed to vary from its standard value while the other v; are either fixed at their
standard values or restrained to remain in their fixed standard relationship to the varying
v;. The results of these computations are exhibited graphically in Fig. 1.

Two interesting characteristics of the solution are revealed. The first is that, in contrast
to the solution obtained by employing the classical theory of elasticity, where the stress

* R. D. Mindlin (private communication).
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F1G. 1. Stress concentration factors for various hypothetical materials.

concentration factor is a constant, 3/2, independent of material properties and the radius
of the cavity, the solution obtained by employing the theory of an elastic material with
micro-structure shows a stress concentration factor which depends on both material
properties and radius. In all the cases considered, the stress concentration factor is higher
than the classical value of 3/2. However, as the ratio (a/4,) approaches infinity, the micro—
structure solution approaches the classical solution and, on the scale of Fig. 1, the
difference between these solutions is indistinguishable for (a/4,) > 103.

The second interesting characteristic is the appearance of a maximum stress concentra-
tion factor at an intermediate value of (a/4;). In view of the previously mentioned
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FiG. 2. Decay of stress for the standard material.

experiments of Germer, MacRae, and Hartman, this critical value probably corresponds
to cavities with diameters one to ten times as large as the interplanar distance of atoms.

In Fig. 2 the stress ratio, (Tgp+ 0gg)/te, is plotted as a function of a nondimensional
measure, r/a, of the distance r, from the center of. the cavity, for the standard material
with several different values of a/4,. It is apparent from this graph that the difference
between the micro-structure solution and the classical solution is localized at the surface
of the cavity. For values of r/fa > 2, the solutions are indistinguishable on the present
scale.
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APPENDIX
On positive definiteness

In this section of the appendix are outlined the steps involved in determining a set of
necessary and sufficient conditions for positive definiteness of the potential energy density.

From the discussion in the second section of this paper it is clear that if a quadratic
form is written in matrix notation g = XMX” where M is a real, symmetric, nxn matrix
(with elements m;;) then a set of necessary and sufficient conditions for g to be positive
definite is given by:

myymy, My My,

my; >0, >0,..., > 0.

my mj, Myy * "My,

When these conditions are imposed on the matrix A of the quadratic form (8) it is evident
that each of the submatrices A, A,, A;, and A, can be treated separately. We obtain from
Ay

by+by+by > 0,
(b3+b3)(2by + b, +b3) > 0,

(b +b3)*(3by +b,+bs) > 0,

(b +b3)2(3b, +b, + b3)(A+20) > 0,
4by+b3)*(3b, +b, +b3)ia(A+) > 0,
4(b, +b3)*(3by + b, +b3)2(34+2) > 0;

from A, :
b, >0,
(b2 +b3) (b, —b3) > 0,
(b2+b3) (b, —b3)a > 0;

from A,:

¢ >0,

1(@a+ajo+as)—£3> 0,

(a10+a13)A, > 0,
A4+ (a0 +a13)A > 0, (50)

2M,A, > 0,

$al3A +AA5 > 0,

2848344 > 0;
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and from A, :
ao > 0,
(a;0+ag )@ g—ayg,) >0,
(ayo—ay1)*(a0+2a,,) > 0,
ao—ay1)[Eaés(@10—a11)+2(as0+2a5,)A5] > 0,
FAs[2¢ 8 s(ayo—ay )+ (ao+2a,,)A5] > 0,
£4&sA3 > 0,
where 4, A&y &y Esy by Esy AL Ay, As, Ay, and A, are defined in (11) and (12). It can now

be shown that the inequalities (12) are necessary and sufficient for the inequalities (50)
and hence necessary and sufficient for the potential energy density to be positive definite.

Proof of inequalities (23)
Proof that a > 0: It can be shown from (12) and (16) that
kyy—k3 /Ky, —k3a/khy = A+21 > 0,
$(by+b3) > 0, (51)

It

'
22

33 = 3(by+b, +b3) > 0,
and hence k,, > 0. Also,
kaskys—k3s = 3(£,E3—283) > 0: (52)

thus
a = kyy(kyzk33—k33) > 0.

Proof that ¢ > 0:
¢ = kiyk33(kyy —kfz/klzz“‘kfs/klsa),

and employing (51) we see that ¢ > 0.
Proof that b > 0: We define

¢y = kyy(khyy+ks3)+ 2k, ki3 — ki, —k3,,
b2 = 3lk;1(2k5, —K33)+kyokys —2k3, +K25],
b3 = ky1(2ky,+3k3) =2k, ok, 5 —2k3, — 1k2,.
Then,
b=2¢,¢,+45,0,+E830,,
and
b3 —2¢2 = 3k ¢ > 0. (53)

It can be shown that ¢ > 0 is a necessary condition for positive definiteness of the
potential energy density, and hence from (53) it is clear that ¢, > 0. Likewise, it is evident
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from (12) that £, > 0 and &, > 0. It is convenient to define

2 = 28/¢,¢,, B* = 2¢3/0.9s,

whence (52) implies 0 < a < 1, and (53) implies 0 < B < 1. The relations

b= 514’1 +452¢2+§3¢3, (54)
&>0,  &>0, G=a¥¢, O0<a<l], (55a)
¢1 > 01 ¢3 > 0’ d)% = Bz¢l¢3, 0 =< ﬂ < 15 (SSb)

are sufficient for proving b > 0. Suppose that £, and ¢, have the same sign; then b > 0
by inspection since it is a sum of positive terms. Suppose, on the other hand, that &,
and ¢, have opposite signs; then from (54),

b= ¢ —4Eh,| +E30s.
However, from the relations (55),
45363 = o’ B*L1418305,
thus,
2|fz¢2| = “ﬂ(51¢153¢3)*,
where we take the positive sign for the square root. Thus, employing (55),
b=¢101—20BC 10,8303 +E3¢,
b> &9y —2281918303)t + s,
b > (&9t —(L:03)*)%

b>0.
Proof that b —4ac > 0: The relations (55), and the identity
b?—dac = (£191+4L202+E303)" —4E1 83— 28 (@103 — 203) (56)

are sufficient for proving that b2 —4ac > 0. We can write (56) in the form

b2 —dac = (£, —E3d3)* +8E,¢,(E 1Py +E303)+8EE303 +80 10383 (57)

Suppose that £, and ¢, have the same sign; then b?>—4ac > 0 by inspection since it is a
sum of positive terms. Suppose, on the other hand, that £, and ¢, have opposite signs;
then, as in the previous proof,

b —4ac = (&1~ E393)? —4uB(E 101 +E303)(81018303)F +4(0” + B2)E 1618303 (58)
Making use of the inequality,
82463 > 26,4, (59)
which holds for any real &, and §,, it follows from (58) that
b>—dac = (£101—&3¢3)* —4aBl(C101 +E303) (610183030 —28:4:83¢3].  (60)
If in (59) we insert 8, = (£,¢,)* and &, = (¢3¢3)%, we obtain

Eipr+ &3ty > 2(E10,E303)%,
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and hence

(€101 +E303)(E101E303)F = 28,918,305
Thus, from (60),

b2 —4dac = (&1 —E303)2 —H(E D1+ E3@3)(E1P1E3da)t — 28, 01¢303),
b?—4ac > [(¢,10)F — (¢303)F]%,
b*—4dac > 0.

The equality sign holds if and only if £,¢, = £3¢; and « = § = 0 which appears to be
possible without violating positive definiteness of the potential energy density.

(Received 16 April 1965)

Résumé—Dans cette étude, le probléme de valeur-limite de la concentration d’effort 4 une cavité sphérique, dans
un champs de tension isotropique, est résolu dans le cadre de la théorie de Mindlin sur un continuum élastique
ayant une micro-structure déformable. On a constaté que le facteur de la concentration d’effort est légérement
supérieur aux 3/2 de I’élasticité classique pour une grande gamme de propriétés matérielles, et que les rapports
du rayon de la cavité & un paramétre de longueur de la matiére—avec un rapport critique, sont presque indépen-
dants des propriétés matérielles restantes pour lesquelles le facteur de la concentration d’effort est maximum.

Zusammenfassung—In dieser Abhandlung wird das Problem des Grenzwertes fiir Spannungsiiberhhung an
cinem kugelfdrmigen Hohlraum in einem Gebiet isotropischer Spannung im Rahmen der Mindlinschen Theorie
eines elastischen Kontinuums mit ciner formverinderungsfiihigen Mikro-Struktur geldst. Es wurde festgestelit,
dass der Spannungskonzentrationsfaktor ein im miissigen Umfang grsserer ist als 3/2 der klassischen Elastizitét
fiir einen weiten Bereich von Material Eigenschaften und Verhiltnissen des Hohlraum Halbmessers zum
Langen-Parameter des Materials, mit einem kritischen Verhiltnis fast unabhlingig von den verbleibenden
Eigenschaften des Materials, fiir welche der Spannungskonzentrations Faktor ein Maximum ist.

AGcrpaxT—3anaya KOHLCHTDAIMH HanpAXeHHs Ha CgepHueckol NONOCTH B MOJE M3OTPOMHOrO HAmps-
KEHHMSl PellcHa B PaMKax TeOPHH MHHAIHHA O 3/ACTHYHOM KOHTHHYYME ¢ nehOpMHPYIOWUEHCH MHKpPO-
CTPYKTYypo#l. YCTaHOB/IEHHO, 4TO $aKTOp KOHIEHTPAUHH HANPAXCHHA HECKONBKO Bbille 3/2 KNacCHUecKo#
3JIaCTHYHOCTH IJiA Gonbioro pasHooGpa3sus cBOHCTB MaTepHana M KoadpHLUMEHTOB PanKYCa MOMOCTH 1O
OTHONICHHIO K IapaMerpaM IUIMHbI MATCpHajia, ¢ KPHTHYECKHM COOTHOIUEHHEM (NMOYTH HE3aBHCHMBIM
OT OCTaJIbHBIX CBOHCTB MaTepHana) npH KOTOPOM MOKa3aTe/ib KOHUCHTPALME HANIPAXKECHHA NMEET MAKCH-
MaJIbHYIO BEJIHYHHY.



